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Abstract

This report describes the preliminary results of an investigation on component reliability analysis
and reliability-based design optimization of thin-walled circular composite cylinders with average
diameter and average length of 15 inches. Structural reliability is based on axial buckling strength
of the cylinder. Both Monte Carlo simulation and First Order Reliability Method are considered
for reliability analysis with the latter incorporated into the reliability-based structural optimization
problem. To improve the efficiency of reliability sensitivity analysis and design optimization
solution, the buckling strength of the cylinder is estimated using a second-order response surface
model. The sensitivity of the reliability index with respect to the mean and standard deviation of
each random variable is calcJlated and compared. The reliability index is found to be extremely
sensitive to the applied load and elastic modulus of the material in the fiber direction. The cylinder
diameter was found to have the third highest impact on the reliability index. Also the uncertainty in
the applied load, captured b5 examining different values for its coefficient of variation, is found to
have a large influence on cylinder reliability. The optimization problem for minimum weight is
solved subject to a design constraint on element reliability index. The methodology, solution
procedure and optimization esults are included in this report.

Shell Buckling Analysis

The circular composite cylir ders considered in this study fall under the general category of thin
shell structures with the disl: lacement field described by the first-order shear deformation theory
formulated as

u(x,y,z) = u0(x,y) + ZfPx(X, y)

v(x,y,z) = Vo(x, y) + Zdpy(X, y)

w(x, y,z) = Wo(x, y)

(1)

where uO, v0, w 0 represent the midplane displacements in x, y, z directions (see Fig. 1), respectively,

and ¢x,gPy describe rotations about the y and x axes, respectively.

Z
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Fig. 1 Computational model used for cylinder buckling analysis

The strain-displacement relations are based on Sanders-Koiter shell theory with the in-plane strains
0 0 0 0

(ex,e), ,_'xy, at z = 0), transverse shear strains (y°z,]/y z, at z = 0), and curvatures (tCx,tCy,lCxy)

formulated as
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where R is the shell radius of curvature in y direction (see Fig. 1). Hence, the elastic strain energy
stored in the shell under axial compression can be expressed as

D/j o {e}aA
( 7pq

(3)

where A/j, Bij, Dij are the larrinate extensional, coupling, and bending stiffness matrices,

respectively, and Cpq is the t_ansverse shear stiffness matrix with the strain vector defined as

={ 0 0 0} T{e'} T eO eOyYxy Kx Ky tC_y Yxz Yyz (4)

The work done by the applied edge load shown in Fig. 1 can be expressed as

W I _/
=2"IA x[(---'_")2+( °_w-Q'0/2ldAOt:jJ

(5)

m

where N x is the stress resultant in the x direction.

To obtain the critical buckling load, the displacements u0, v0, w 0 and rotations Ox, q)y are

approximated by different Ritz series with Legendre polynomials used as the interpolation
functions such that the essential boundary conditions are satisfied. Then by applying the principle
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of minimum total potential energy, the critical buckling load is found by setting Eqs. (3) and (5)
equal to each other and solving the resulting eigenvalue problem for the critical load factor such that

Ncr=/],crNx (6)

A computer code (hereinafle r referred to as the shell code) based on the described analysis
procedure' is used to calculate the axial buckling loads for circular cylinders with clamped loaded

edges. In this case, edge shortening is allowed along edge 4 with edge 2 kept fixed (see Fig. 1).
Also the conditions of symmetry along edges 1 and 3 are enforced by setting the v displacement

and Oyrotation to zero. Table 1 below shows the list of boundary conditions.

Table 1. Description of boundary conditions for the shell model a

Pmameter Edge 1 Edge 2 Edge 3 Ed_;e 4

u 0 1 0 0
v 1 1 1 1
w 0 1 0 1

o 1 o 1
_y 1 1 1 1

a 0 _- l'l'ee, 1 = fixed

For validation purposes, we compared the results found using the shell code with those reported
previously by Waters 2 as well as those we obtained using the STAGS structural analysis code.
Table 2 below shows the geometric and material properties used for each specimen while Table 3
gives the laminate ply distribution and the corresponding cylinder buckling force.

Table 2. Geometric and material properties of each cylinder specimen

Specimen L in Dp in tply, in Ep psi F_.z, psi v_2 GI2 , psi
dg,

1 14 l 5.75 0.005 18.5111 e6 1.64e6 0.3 0.8706e6

2 14 15.75 0.005 18.5780e6 1.64e6 0.3 0.8737e6

3 14 15.75 0.005 18.6705e6 1.64e6 0.3 0.8780e6

4 14 15.75 0.005 19.2588e6 1.64e6 0.3 0.9057e6

5 14 15.75 0.005 18.6154e6 1.64e6 0.3 0.8754e6

The results obtained from the shell code are in fairly good agreement with those found using
STAGS. The difference ranges from the lowest (0.3%) for specimen 5 to the highest (17%) for
specimen 1. The large difference observed in the case of specimen 1 may be attributed to using a
Legendre polynomial that i.; not of sufficient accuracy for the selected ply pattern. We also
observed some differences with the results found by Waters 2. Of particular interest is the
difference between specimens 4 and 5. We found cylinder 5 to be stronger of the two whereas the
results obtained by Waters shows the opposite. Upon closer examination of both STAGS and
shell code models, we did rot find anything that would explain the reason for this discrepancy.
However, it appears that for the case when the cylinder length and diameter are of nearly equal
values, the laminate pattern reinforcing the hoop direction (specimen 5) provides a stiffer design
than that reinforcing the axial direction (specimen 4). This response is attributed mainly to the
Poisson's effect. Our results are consistent with the nonlinear static and nonlinear transient

buckling analyses conduct¢'.d by Hillburger and Starnes 3.
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Table3. Comparisonof predictedandmeasuredbucklingloads

Axial BucklingForce,lb

Specimen Ply Distribution Linear Non-Linear Experiment_ STAGSb Shell
FEA_ FEA_ Code

1 (+45 / 0 / 90)_ 44,466 39,670 30,164 42,355 49,553

2 (-145 / T-45)2:, 105,829 95,618 73,975 104,044 111,349

3 (-145 / 0 / 90)). s 158,258 147,759 180,443 185,420

4 (_+45 / 04 / T-45)s 141,332 128,610 125,542 154,655 158,319

5 (-145 / 904 / -T45)s 139,411 97,047 91,667 167,175 167,717

_Values reported by Waters 7 lJsing L = 16 in. with a 1 in. cap at each end.
b51 quadrilateral elements ak,ng the length and169 along the circumference.

Structural Reliability Analysis

The limit-state function for tl-e critical axial buckling force is formulated as

g(X) =Pcr - Pa (7)

where Po is the resultant axial force (Load) acting on the cylinder, Pcris the corresponding buckling

force (Resistance), and X = i X1, X2 ..... Xn }T is the vector of continuous random variables affecting

the buckling load. According to Eq. (7), g < 0 represents failure, g > 0 indicates safety, and g = 0
represents the limit-state surface separating the failure and safe regions.

The probability of failure is expressed mathematically as Pf = P(g(X) < 0), and found as

p¢: f ..... (8)

where fx(x)is the joint probability density function of n random variables and f_ is the failure

region defined by g < 0.

Since the determination of the joint probability density function is not possible in this case, several
alternative techniques may bz used to estimate the probability of failure as defined by Eq. (8). Next
we discuss two such techniq_Jes used in this investigation.

Monte Carlo Simulation

To estimate the failure probability using the Monte Carlo simulation (MCS) techniques, a large
population of response samples must be obtained. Random sampling is done by using a random

number generator to obtain t.:ae values for X 1, X 2 .... , X n based on the specified mean, variance, and

distribution type of each random variable. Using each random set as input, the shell code is used to
obtain the corresponding buckling load followed by the limit-state function in Eq. (7) at each
simulation cycle. Hence, the failure probability and its corresponding coefficient of variation are
found as

es: us/N (9)
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cor(P:)= I(1- P:)P:N 'S (10)

where N is the total number :_f simulation cycles, and N/is the number of cycles resulting in

"failure" (g < 0). The estimates obtained for Pf and COV(Pf) become exact as Napproaches

infinity.

In this study, we treated the applied load, geometric dimensions of the cylinder, and engineering
properties of the material as random with statistical properties as defined in Table 4. The material
properties correspond to carbon/epoxy (AS4 12k/3502) unidirectional tape with nominal
engineering properties obtained from MIL-HDBK-17-2E. Due to unavailability of data, the
coefficients of variation in the applied load and geometric variables are assumed. All random
variables are also assumed to be statically independent. The shell laminate contains 16 layers each
defined by separate thickness and ply angle variables. Therefore, Table 4 describes a total of 39
random variables.

Table 4. Statistic d properties of random variables affecting cylinder reliabilit,/

Random Distribution Mean COV

Variable (No) T_,pe (%)

E_ (1) Normal 18.0e6 psi 3.19
E 2 (2) Normal 1.35e6 psi 4.26
vlz (3) Normal 0.226 5

Gt2 (4) Normal 0.543e6 psi 5.16

tD_y(5-20) Normal 0.005 in. 1
0p'_y(21-36) Normal [+_45/90ff :r,.45/_+45/904 / -T-45] Ia
-D (37) Normal 15 in. 1

L (38) Normal 14 in. 1

Pa (39) Normal 14.369e4 lb 5
aStandard Devialion

Of a total of 5,314 simulaticu cycles conducted, buckling failure (i.e., g < 0) was observed in 988

samples. This gives a prob_tbility of failure Pf = 0.186 for this specimen based on the assumed

mean and variance for the resultant compressive axial load. The plots of P: and COV are shown in

Fig. 2 with the coefficient o!"variation conversing to COV(Pf) = 0.0287.
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Fig. 2 MCS convergence history
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Thehistogramfor thebucklirg loadP, in Fig. 3 shows a normal probability distribution with a
mean of 151,203 lb and a coefficient of variation of 2,8% (standard deviation of 4,245 lb).

J f !
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Fig. 3 Histogram for axial buckling force, P_r(lb)

In examining the effect of tht: coefficient of variation of the external force (i.e., COV(P a )) on

cylinder failure probability, we found that in changing the COV from I% to I0%, failure probability

increases from Pf = 0.05 to P/= 0.308, an increase of 516%.

Although Monte Carlo simulation provides a convenient technique for the estimation of failure
probability, it may be very inefficient when considering the computational time associated with each
buckling analysis. A more eficient alternative to MCS involves the use of analytical techniques as
discussed in next.

Reliability Index

If the limit state function is a linear function of all random variables, then we can use the first-order

reliability method (FORM) to calculate the so called reliability index/3 as the inverse of the

coefficient of variation of the, limit state function or simply

(11)
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where#Per',Up are the mea _ values of the critical axial buckling force and resultant axial force,

respectively, and crp,.r, crp are the corresponding standard deviations. Since Pcr = Pcr(X), and all

the random variables are assamed to be uncorrelated, we can obtain the variance of the buckling
force using the partial derivative rule

= GXi (12)

If an analytical expression relating Pcr to the pertinent random variables is available, then the partial

derivatives in Eq. (12) can b: obtained analytically, othem'ise they may be found numerically using
a finite difference scheme.

If all random variables are normally distributed, then the probability of failure can be found as

Pf =O(-fl) (13)

where • is the cumulative distribution function of the stan "dard normal variate. For example,

fl = 4.26 would correspond to Pf =-10 -5 .

If, on the other hand, the lin it state function is a nonlinear function of random variables, then the

method proposed by Hasofer and Lind 4 may be used to solve for ft. In this method, the original

limit state, g(X) = 0, is translormed into the reduced limit state, g(X') = 0, with each reduced random
variable found using the transformation

X' i - Xi - #xi , i = 1,2 .... n (14)

t_ X i

The point on the reduced lir_fit-state surface g(X') = 0 having the maximum joint probability of
failure is called the design point (also known as the most probable failure point, MPP) with
coordinates identified by vector x'*. The distance from the origin of the reduced coordinate system

to the design point is the shortest distance to the failure surface, and is identified as flor the

Hasofer-Lind reliability index. Each coordinate of the design point is related to the reliability index
as

x i =-air, i= 1,2 ..... )_ (15)

where 6t i represents the dilcction cosine corresponding to X' i, and is found as

•-:1 1 i,j = 1,2 ..... n (16)

The asterisk symbol indicates that the derivatives of the reduced limit-state function are evaluated at

the design point. Since the limit-state function is nonlinear, the solution for fl becomes iterative as

described in the appendix.



Reliability Sensitivity Analysi._s

A useful by product of analytical reliability technique is the evaluation of probabilistic sensitivity

derivatives of fl with respect t:_the mean #x i and standard deviation aX_ of each random variable
as

t _

Xi

fltY X i

- ai , i = 1,2 ..... n

GX i

(17)

,2
3t3 x'_ i

tg_ X i flaX i

_ aixi
i= 1,2 .... ,ti

(18)

Since the random variables (st:e Table 4) are of vastly different scales, the sensitivity derivatives are
normalized as

(19)

(20)

To calculate fl and its sensitivity derivatives, we must be able to evaluate the derivatives of the limit-

state function with respect to individual random variables. These calculations, whether the limit-
state function is linear or nonlinear, become very time consuming if there are many random
variables and ifg(X) is an implicit function of these random variables.

To alleviate this burden and lacilitate the subsequent reliability-based design optimization, we
developed an analytical mod :1 of the limit-state function using the response surface methodology as
discussed next.

Response Surface Methodol._,g.y

Response surface methodolc, gy (RSM) is mainly a statistical procedure used to develop a smooth
mathematical function that represents an accurate functional relationship between the response
variable and the independent parameters that influence it.

A quadratic response surface model for n independent variables can be expressed as

n n i

f(X,a) = a0 + __, aiX i + Z Z aijXiXj
i=1 i=lj=l

(21)



wherea0, a i, aij are the unknown regression parameters for a total of (n + 1)(n + 2) / 2 including

the interaction terms XiX j , : # j. The accurate estimation of these regression parameters usually

requires a large number of response samples, which could significantly increase the computational
cost of the analysis.

For estimation of cylinder reliability, we replaced the exact limit-state function in Eq. (7) by a close
approximation in the form

g(X)= ecr - e a (22)

where Pcr is the estimated (qtted) axial buckling force found using the algebraic response surface

model defined by Eq. (21 ).

For the cylinder specimen described in Table 4, we estimated the coefficients ao, ai, aij by

performing a least-sq uares l it of the regre ssi on model i n 12Z1. (21 ) to the response v al ues obtai ned
from the Monte Carlo simulation.

To validate the model, we examined various statistics such as the coefficient of determination R 2 and

the root mean square error (RMSE) found as

N 2

i=1RMSE (23)

where N is the number of response observations and M is the number of unknown coefficients in
the response surface model.

Since the approximate limit-state function in Eq. (22) is an explicit function of all 39 random

variables, we would be able to calculate/3 and its probabilistic sensitivities through analytical

differentiation of the response surface model. The mean buckling force estimated by the second
order response surface equation is found to be 151,203 ib with model RMSE = 150.85 lb and R 2 =
0.9989.

Table 5 below shows the values of the sensitivity derivatives of/3 with respect to the mean and

standard deviation of each random variable. The values in columns 3 and 5 are the normalized or

logarithmic sensitivity derivatives that are normalized once more with respect to the largest
sensitivity value in each group.

As highlighted in Table 5, cf all random variables, the applied load, Young's modulus in the fiber
direction, and cylinder diameter are found to have the greatest influence on cylinder reliability with
axial buckling as the only failure mode. Although total shell thickness does have a large impact on
cylinder buckling, the influence of each individual ply thickness is found to be less significant. It is

also important to point out that the probabilistic sensitivity derivatives of 13are greatly influenced by

the variance in each random variable both implicitly and cxplicitly as indicated by Eqs. (17) and
(18).



Table 5. Probabilistic sen:;itivity derivatives of reliability index fl for the specimen in Table 4

Random
Variable (0[3 / 6_12Xi) (t_i)norm (Off / Cg(TXi) (r]i)norm

El 8.14E-07 8.44E-01 -3.53E-07 -2.90E-01
E 2 1.68E-06 1.30E-01 -1.50E-07 - 1.24E-02

V12 67_2E-01 9.01E-03 -5.03E-03 -8.1 IE-05

Gi2 2.:52E-06 7.87E-02 -1.65E-07 -6.60E-03

t_ 4.13E+02 1.19E-01 -7 93E+00 -5.66E-04
t 2 4._,0E+02 1.27E-01 -9.01E+00 -6.43E-04
t 3 4.02E+02 1.16E-01 -7.49E+00 -5.35E-04
t 4 4. I0E+02 1.18E-01 -7.81E+00 -5.58E-04

t 5 4.05E+02 1.17E-01 -7.62E+00 -5.44E-04
t6 3.93E+02 1.13E-01 -7.17E+00 -5.12E-04
t7 4/_2E+02 1.27E-01 -9,06E+00 -6.47E-04
t8 5,80E+02 1.67E-01 -1,56E+01 -I.IIE-03
t9 5 .¢i3E+02 1.62E-01 - 1.47E+01 - 1.05E-03
t_o 4.50E+02 1.30E-01 -9,40E+00 -6.71E-04
tt_ 3 A6E+02 9.95E-02 -5.55E+00 -3.96E-04
t_2 3.38E+02 9.73E-02 -5.31E+00 -3.79E-04
t_3 3.42E+02 9.85E-02 -5.44E+00 -3.88E-04
t_4 3.52E+02 1.03E-01 -5.75E+00 -4.10E-04
tt5 5.28E+02 1.52E-01 -1.29E+01 -9.23E-04
tt6 5. i 2E+02 1.47E-01 - 1.22E+01 -8.70E-04

0 t -3 33E-02 -8.63E-02 -4.63E-04 -2.98E-04

02 -2 79E-02 7.22E-02 -3.25E-04 -2.09E-04

03 2.53E-02 1.3 IE-01 -5.36E-04 -6.88E-04

04 1.86E-02 9.61E-02 -2,88E-04 -3.70E-04

05 1.27E-02 6.61E-02 -1.36E-04 - 1.75E-04

06 7.92E-03 4.10E-02 -5.24E-05 -6.74E-05

07 1.08E-02 -2.79E-02 -4.84E-05 -3.11E-05

08 -4.49E-02 -I.16E-01 -8.43E-04 -5.42E-04

09 -4.42E-02 -I.15E-01 -8.19E-04 -5.25E-04

01o 2,44E-02 -6.32E-02 -2.48E-04 -1.60E-04

011 -2.43E-03 - 1.26E-02 -4.95E-06 -6,36E-06

012 -2.50E-03 - 1.29E-02 -5.21E-06 -6.69E-06

013 -1.43E-03 -7.42E-03 -1.71E-06 -2.20E-06

014 -6.82E-05 -3.54E-04 -4.05E-09 -5.20E-09

0_5 3 95E-02 - 1.02E-01 -6.52E-04 -4.19E-04

016 -4.35E-02 - 1.13E-01 -7,90E-04 -5.07E-04

D 2 85E-01 2.46E-01 - 1.13E-02 -2.43E'03
L - I. 85E-01 - 1.49E-01 -4.46E-03 -8.92E-04

Pa -1.21E-04 - 1.00E+00 -9.75E-05 - 1.00F-._,

L
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Figure4 givestheplotsof normalizedsensitivityderivativesof fl with respect to mean and standard

deviation of each random vmiable.
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Fig. 4 Normalized probabilistic sensitivities of/3 with respect to (a) mean value and (b) standard
deviation of each random variable for the specimen defined in Table 4
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Effects of Distribution and C,_efflcient of Variation of Applied Load on fl

Since the results of reliability analysis indicated a large sensitivity to the applied load, we also

examined the effects of the distribution type and coefficient of variation of P, on fl and probability

of failure. Two different distribution types (Normal and Lognormal) and three different values for
coefficient of variation of P_ ,vere considered. In both cases, the applied load was assumed to have
a mean of 143,690 lb. The clitical buckling load was determined from the response surface model
and was not affected by changes in COV of the applied load.

The results shown in Table 6 below indicate that the coefficient of variation has a significant

influence on both fl and prob._bility of failure whereas the effect of the distribution type is relatively

insignificant. It must be noted that in both cases the remaining 38 random variables were assumed
to have normal distributions as specified in Table 4.

Table 6. The effects of distribution and coefficient of variation of Pa on cylinder reliability

Reliability Index Method Monte Carlo Simulation

P_ Distribution C()V (%) fl P/ P/

Normal
1 1.7315 0.042 0.050
5 0.9099 0.181 0.186
10 0.5038 0.309 0.308

Lognormal

1 1.7326 0.042 0.050

5 0.9188 0.179 0.184

10 0.5421 0.295 0.295

Reliability-Based Structural Optimization

The optimization problem is formulated as an element reliability index based structural optimization
problem with a single design constraint imposed on buckling reliability index. Mathematical y, the
optimization problem may be formulated as

minimize W(X)

subject to: fib > flmin (24)

y/l < y/< _u, i= 1,2 ..... NOV

where W is the cylinder wei/_;ht and fib is the reliability index associated with axial buckling. The

design variables represent the mean values of only a subset of random variables such that Yi = I.txi

with the corresponding standard deviations held constant during the optimization process. Each
design variable is limited by lower and upper bound side constraints as indicated in Eq. (24).

We chose a laminate concep_ similar to that in Table 4, but with midplane symmetry (i.e.,

[+45 / 904 / -T-45]s), which reduces the total number of random variables from 39 to 23. Of the total

of 23, only the 8 corresponding to ply thicknesses are treated as design variables. More
specifically, their mean values are allowed to change while their standard deviations are held fixed.
The mean thickness for eacl_ ply is limited by lower and upper bounds of 0.0026 in. and 0.007 in.,
respectively.

12



Theothergeometricparametersandmaterialproperties(inTable4) aretreatedasrandombutwith
theirmeansandcoefficientsof variationkeptfixedduringtheoptimizationprocess.

Theoptimizationproblemir: Eq.(24) issolvedusingthemethodof sequentialquadratic
programmingin DOT5optivaizationsoftwarebasedonaglobalresponsesurfacemodelingof the
bucklingresponseasexplainednext.

Global Response Surface Technique

In this case, a quadratic response surface model similar to that in Eq. (21) is developed for use over
the entire design space. The population responses are generated using a direct Monte Carlo
simulation with each random variable having a uniform distribution defined by the limits

X], X_ = (1 + _xj )#X j, j = 1,2 ..... n (25)

where qxj represents the b_,und increment for random variable Xj as defined in Table 7 below.

By assuming each random variable is uniformly distributed, we are attempting to obtain samples
from various points in the design space. This modeling of random variables, however, would not
prevent the use of the resulting response surface model for design optimization where individual
random variables are assumed to have a normal distribution.

Table 7. Mean values aT_d bound increments of random variables in Monte Carlo simulation

Random Variable (Xi) #xj gxj (%)

Elastic Modulus, E_ 18.0e6 psi 4
Elastic Modulus, E 2 1.35e6 psi 5

Poisson Ratio, v_2 0.226 6

Sheal" Modulus, Gt2 0.543e6 psi 6

Ply Thickness, t0_y 0.005 in. 50

PIv Angle, 0p,y 45 °, -45 °, or 90 ° 26

Cylinder Diameter, D 15 in. 50

____liT_der Length, L 15 in. 50

The large increment on ply thickness allows for sampling over the entire feasible design space
consistent with the corresponding lower and upper bounds specified in the optimization problem.
We also chose large increments for cylinder diameter and length so the same response surface
model can be used for optie_ization of cylinders with length and diameter of 10 to 20 in. Lastly,
the support condition at the loaded edges is treated as deterministic with the external load assumed

to be uniformly distributed ,over the top and bottom edges of the cylinder.

We generated the necessary response data by conducting a total of 3,588 Monte Carlo simulation
cycles. The buckling response for each cycle is found using the shell code _ with each interpolation
function modeled by a 12th degree Legendre polynomial. The buckling load found directly from
this computer program is d,abbed herein as "exact".

The response surface model fitted through the sample data is found to have R 2 = 0.9774, COV =
3.04%, and RMSE = 4,383.26 lb. To assure the accuracy of the response surface model, we
considered 20 random samples and compared the fitted buckling load to the exact value for each

13



sample. The results, shown itl Table 8 below, indicate a maximum error of 4.22%, which is
considered acceptable.

Table_. Comparison of exact and fiUed buckling loads

R andom Exact Fitted

Sample Pcr, lb Pcr, Ib % Error

1 148551 154305 3.87

2 164791 164622 0.10

3 157294 156206 0.69

4 155613 157132 0.98

5 146943 148753 1.23

6 154598 153307 0.84

7 147618 150250 1.78

8 157701 153539 2.64

9 149712 151621 1.28

10 152033 150656 0.91

11 138397 136995 1.01

12 149330 148239 0.73

13 149616 152113 1.67

14 124890 130162 4.22

15 138740 139190 0.32

16 157662 159231 1.00

17 160469 160284 0.12

18 148128 145619 1.69

19 154835 156182 0.87

20 143155 146534 2.36

Having developed the necessary response surface model, the optimization problem is solved with
the mean and coefficient of _ariation of each random variable as specified in Table 9. The solution
to the optimization problem _s given in Table 10 for three combinations of length and diameter and
two different values for coefficient of variation of the applied load. The minimum reliability index
is chosen as 4.26. The total _hell thickness, h is shown in 'Fable 10 in lieu of each mean ply
thickness value.

In all cases, the increase in COV (P_) causes an increase in the optimal laminate thickness and
cylinder weight. The combi ration of small diameter and long length increases the buckling strength

of the cylinder. The large value for ]3_n resulted in many of the thickness design variables to be

pushed closer to the upper bound of 0.007 in.
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Table 9. Statistical_p2operties of random variables used in cylinder design optimization

1_andom Dist. Mean COV

Variable Type (%)

P,, Normal 143,690 lb 10
E_ Normal 18.0e6 psi 3.19
E 2 Normal 1.35e6 psi 4.26
v_ 2 Normal 0.226 5
G_2 Normal 0.543e6 psi 5.16

tply Normal /2)_ 5

_y Normal [_45/90J-Y-45]s 5_Normal 10, 15, 20 in. 10
L Normal 10, 15, 20 in. 10

"Standard Deviation

']'able 10. Optimization results for tim,, = 4.26

l'arameter COV = 5% COV = 10%

/2o = 20 in.,/2 L = 10 in.

Pcr, lb 200,278 223,995

W, Ib 3,323 3.542

h, in 0.0924 0.0986

/.to = la t = 15 in

ficr, lb 194,019 220,142

W, lb 3.692 3.956

h, in 0.0912 0.0976

_o = 10 in., #L = 20 in.

/3cr, lb 210,187 230,097

W, lb 3.601 3.790

h, in 0.0996 0.1046

Computational Requirements

Although the use of respon._e surface model results in a considerable computational efficiency, it
still requires further improvcment. In this investigation, the major cost of the reliability-based
design optimization was as,;ociated with the Monte Carlo simulation to generate the necessary pool
of response samples for developing a reasonably accurate response surface model of the buckling

load. Once that part of the problem was completed, the actual optimization analysis took no more
than one or two minutes.

The 3,588 simulation cycles took approximately 448.5 CPU hours on a Sun server. Therefore, it is
clear that other techniques for further improvement in computational efficiency must be
investigated.
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Appendix
i _ p* i _

For the composite cylinder, the nonlinear limit state function is expressed as g(xl ,x2 .... xn )
i* i* t*

where (x t ,x 2 .... x n )represent the reduced coordinates of the design point (or MPP), which are

unknown initially, and are calculated according to the iterative process outlined in Fig. A-l.

Guess the coordinate s of MPP

(xl, x2 ....x,,) = (lax_,l'x2,...,/ax,, )

Transform x" into reduced coordinates

,* Xi -laX i .
X i =

GX i

i = 1,2 ..... n

Calculate the coordinate direction angles

a i = i = 1,2 ..... n

_i=lk t/*

where

,= GX i Y

STOP )

No

_U_da: _h ec_o_d_fll e s of MPP

i=1,2 ..... n

Solve for 13by finding the roots of the limit state function equation

Fig. A-I Pt_xzedure for calculating the Hasofer-Lind reliability index

For a more thorough descr ption of the procedure, the reader is referred to Refs. 4 and 6.
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